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SEPARATION SCIENCE AND TECHNOLOGY, 17(1), pp. 1-118.1982 

The Present Status of Dense (Supercritical) Gas 
Extraction and Dense Gas Chromatography: Impetus for 
DGC/MS Development 

L. G .  RANDALL* 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH, 84112,UNITED STATES 

ABSTRACT 

Dense (supercritical) gas chromatography and the related rap- 
idly growing field of dense gas extraction are reviewed and an ex- 
tensive compilation detailing the dense gas systems (solvent gases, 
solutes, temperatures, pressures) that have been studied is pre- 
sented. Furthermore, dense gas chromatography is compared to both 
gas and high performance liquid chromatographies with emphasis on 
mass spectrometric detection in all three. It is concluded that a 
dense gas chromatogra.ph/mass spectrometer, a new instrument, is 
both a complement to existing techniques and a timely development 
for use with dense (supercritical) gas systems? 

I .  INTRODUCTION 

The main purpose of this paper is to review the area of dense 

gas chromatography and the related (broader) area of dense gas ex- 

traction--particularly since there has been intense renewed inter- 

est in these areas in the last six years. A secondary purpose is 

to present the motivation for developing a new instrument, a dense 

gas chromatograph/mass spectrometer (DGC/MS), which is capable of 

directly interfacing high pressure systems to a mass spectrometer, 

a powerful selective and universal detector. 

*Present address: Hewlett-Packard, Avondale Division, Avondale, 
PA, 19311. 
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2 RANDALL 

Tn c o m p i l i n g  d a t a  t o  create a d i r e c t o r y  of  t h e  e x p e r i m e n t a l  

ronc l i t i ons  t h a t  had been  s t u d i e d  i n  DGC and t h a t  would b e  p e r t i n e n t  

t o  t h e  o p e r a t i o n  o f  a DGC/MS, t h e  a u t h o r  became k e e n l y  aware of  t h e  

abundan t ,  v e r y  recent work w i t h  d e n s e  g a s e s  as e x t r a c t i v e  s o l v e n t s .  

hecause  of t h e  i n t i m a t e  o v e r l a p  of t h e  areas of d e n s e  gas  chroma- 

togr, iphy and  d e n s e  g a s  e x t r a c t i o n ,  i t  w a s  obv ious  t h a t  a u s e r u l  

c o m p i l a t i o n  would have  t o  i n c l u d e  d a t a  from a l l  t h e  r e l a t e d  work of 

L W ,  d e n s e  g a s  e x t r a c t i o n  and  s o l u b i l i t y  s t u d i e s .  

'[he r e s u l t i n g  c o m p i l a t i o n  i s  p r e s e n t e d  a f t e r  f i r s t  d e s c r i b i n g  

t h e  p r o p e r t i e s  which make dense  g a s e s  s o  a t t rac t ive  as s o l v e n t s ,  

t h e n  o u t l i n i n g  the r e p o r t e d  work i n  d e n s e  g a s  e x t r a c t i o n  and  D G C ,  

and f i n a l l y  comparing GC/MS, HPLC/MS and DGC/MS t o  d e t e r m i n e  t h e  

~ l o s 5 i b l e  a d v a n t a g e s  of DGC/MS. The a i r tho r  hopes  t h a t  t h e  r e a d e r  

w i l l  p a i n  a n  a p p r e c i a t i o n  o f  1) d e n s e  g a s e s  as v i a b l e  a l t e r n a t i v e s  

t o  l i q u i d  s o l v e n t s  and 2 )  t h e  p o t e n t i a l  o f  t h e  DGC/MS technique--a  

t i m e l y  development  which p romises  t o  b e  a p p l i c a b l e  t o  a wide v a r i e t y  

of t i  igh p r e s s u r e  p r o c e s s e s .  

2 .  PROPERTIES OF DENSE GASES 

A d e n s e  g a s  ( a l s o  r e f e r r e d *  t o  as a s u p e r c r i t i c a l  f l u i d ,  h i g h  

p r e s s u r e  g a s ,  h y p e r p r e s s u r e  g a s ,  u l t r a  h i g h  p r e s s u r e  g a s )  i s  a g a s  

a t  t e m p e r a t u r e s  and  p r e s s u r e s  s u c h  t h a t  i t s  d e n s i t y  i s  comparable  

t o  normal l i q u i d  d e n s i t i e s  o f  t h e  s u b s t a n c e .  A s  shown i n  F i g u r e  l"", 

" ' lhe v a r i o u s  terns are  used  i n  d i f f e r e n t  areas by d i f f e r e n t  au- 
t h o r s  w i t h  some e f f o r t  t o  d e f i n e  p r e s s u r e  r e g i o n s .  T h i s  a u t h o r  
p r e f e r s  t h e  term "dense gas" t o  emphasize t h e  f a c t  t h a t  t hemos t  
impor t an t  p a r a m e t e r  i n  the work t o  b e  d e s c r i b e d  i s  the d e n s i t y  
and n o t  e i t h e r  the a b s o l u t e  p r e s s u r e  o r  t h e  t e m p e r a t u r e  a l o n e .  

';:.From v a n  d e r  Waal's Law of Cor re spond ing  S t a t e s  one would ex- 
p e c t  that  the r e l a t i o n s h i p  between t h e  r educed  p a r a m e t e r s  shown 
in  F i g u r e  1 is a p p l i c a b l e  f o r  a l l  s u b s t a n c e s  ( 4 ) .  S i m i l a r  curves 
+or e t h y l e n e ,  methane,  n i t r o g e n ,  a c e t y l e n e ,  carbon monoxide, pro-  
pane ,  and a r g o n  w i t h i n  the reduced  t e m p e r a t u r e  r a n g e  1.000 5 
T' 5 1.049 f a l l  r emarkab ly  c l o s e  t o  t h e  c u r v e  shown i n  F igu re  I .  
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PRESENT STATUS OF DENSE GAS APPLICATIONS 3 

FIGURE 1. Reduced d e n s i t y  ( p ~ )  as a f u n c t i o n  of reduced p r e s s u r e  
(PR) f o r  t h r e e  gases  a t  reduced temperatures  (TR) c l o s e  
t o  1. (Throughout t h i s  paper ,  "reduced" means t h e  v a l u e  
of a parameter divided by i t s  v a l u e  a t  t h e  c r i t i c a l  
p o i n t . )  Reduced isotherms f o r  carbon d ioxide  (TR = 
0.799) and ammonia (TR = 0.788) show d e n s i t y  as a 
f u n c t i o n  of p r e s s u r e  f o r  s u b c r i t i c a l  gas  and l i q u i d  
phases. (Data from References 1 and 2 . )  

f o r  a gas  a t  temperatures  j u s t  above t h e  c r i t i c a l  temperature  (T  ) 

of t h e  subs tance ,  l i q u i d - l i k e  d e n s i t i e s  are r a p i d l y  approached w i t h  

modest i n c r e a s e s  i n  p r e s s u r e  i n  t h e  range of 0.7 t o  2 t i m e s  t h e  

c r i t i c a l  p r e s s u r e  (P ). Higher p r e s s u r e s  are  requi red  t o  a t t a i n  

l i q u i d - l i k e  d e n s i t i e s  f o r  temperatures  f u r t h e r  above c r i t i c a l ,  as 

demonstrated by t h e  t h r e e  isotherms i n  F igure  2.  

I t  i s  i n t e r e s t i n g  t o  compare t h e  d e n s i t y  near  t h e  c r i t i ca l  

p o i n t  t o  d e n s i t i e s  of common s o l v e n t s  a t  room temperature ,  i . e . ,  

condi t ions  f a r  from c r i t i c a l  b u t  t y p i c a l l y  ancountered i n  high per- 

formance l i q u i d  chromatography and perhaps i n  some l i q u i d  s o l v e n t  

e x t r a c t i o n  procedures .  A survey of six common solvents--benzene, 

cyclohexane, carbon t e t r a c h l o r i d e ,  chloroform,  n-pentane, and iso-  

butane--shows t h a t  f o r  t h e s e  s o l v e n t s  a temperature  of 300°K is  

equiva len t  t o  reduced temperatures  of 0.53 t o  0.74. Hence, as 

shown by t h e  isotherms i n  F igure  1 f o r  C 0 2  and NH 

p e r a t u r e s  of about  0 .79--s l ight ly  high f o r  t h e  room temperature  

a t  reduced t e m -  3 
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4 RANDALL 

l o o  

10-1 

10- 

1 0 - l  l o o  l o 1  

REDUCED P R E S S U R E  

FIGURE 2. Reduced v i s c o s i t y  (TQ) and  d e n s i t y  ( p ~ )  as f u n c t i o n s  of 
reduced p r e s s u r e  a t  v a r i o u s  r educed  t e m p e r a t u r e s  (TR). 
( E t h y l e n e  d a t a ,  Ref .  2 ;  n-pentane d a t a ,  Ref.  3.) 

. . - . __ . -- n-Pentane,  TR = 0 .63  ( i . e . ,  25OC) 

-..-..-.. n-Pentane, TR = 0.789 

__ E t h y l e n e ,  TR = 1.002, (Tc + 0.50°C) 

TR = 1.037,  (Tc + 1O.5O0C) 
TR = 1.108, (Tc + 3O.5O0C) 

E t h y l e n e ,  

E t h y l e n e ,  

___ ~ __ 

. . . . . . . . 

r a n g e ,  t h e  d e n s i t i e s  a t  room t e m p e r a t u r e  are on ly  a f a c t o r  of a b o u t  

t w o  t imes  t h e  dense  g a s  d e n s i t y  a t  2P and T . For f u r t h e r  compar- 

i s o n  between dense  g a s e s  and l i q u i d ,  t h e  v i s c o s i t y  d a t a  d i s p l a y e d  

i n  F i g u r e  2 show 

pen tanc )  i s  a f a c t o r  of f o u r  t i m e s  t h a t  o f  dense  e t h y l e n e  f o r  2P 

and 'r and Tc) .  

Also i t  can  b e  s e e n  t h a t  t h e  g a s  v i s c o s i t y  approaches  t h e  l i q u i d  

v a l u e  more s l o w l y  ( w i t h  i n c r e a s i n g  p r e s s u r e )  t h a n  does t h e  d e n s i t y .  

t h a t  t h e  v i s c o s i t y  of a common l i q u i d  s o l v e n t  (n- 

(and a f a c t o r  of t e n  t i m e s  t h a t  of t h e  g a s  at  P 
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PRESENT STATUS OF DENSE GAS APPLICATIONS 5 

The curves i n  F igure  2 a l s o  i l l u s t r a t e  t h e  d i f f e r e n c e  i n  temperature 

dependence between v i s c o s i t y  and d e n s i t y :  an  increased  temperature  

l e a d s  t o  an  increased  v i s c o s i t y  f o r  a gas  and a decreased v i s c o s i t y  

f o r  a f l u i d  (dense gas o r  l i q u i d )  bu t  t o  a decreased d e n s i t y  f o r a l l  

s ta tes .  

It i s  a l s o  of i n t e r e s t  t o  explore  t h e  v a l u e s  o f t h e d i f f u s i v i t y  

i n  t h e  c r i t i c a l  reg ion  v e r s u s  t h e  gaseous and l i q u i d  s t a t e s .  The 

reduced d i f f u s i v i t y  ( f o r  s e l f - d i f f u s i o n ) ,  D --as w e l l  as t h e  reduced R 

v) a: 
W 
b 

2 a: 
2 
n 

n 

W 
U 
3 
W a: 

FIGURE 3 .  Reduced v i s c o s i t y  (qR), d e n s i t y  (p ) ,  s e l f - d i f f u s i v i t y  
(DR) as f u n c t i o n s  of reduced p r e s s u r e  f o r  methane a t  
two reduced temperatures  (TR). The i n v e r s e  of t h e  n- 
pentane reduced v i s c o s i t y  ( a t  TR = 0 . 6 3 )  is  presented  
a s  an  approximation t o  l i q u i d  d i f f u s i v i t i e s  a t  room 
temperature .  (Densi ty ,  v i s c o s i t y  d a t a  from Ref. 2 ,  n- 
pentane d a t a  from Ref. 3 ,  d i f f u s i v i t y  d a t a  from Ref. 5 . )  

Methane: TR = 1.05 f o r  pR,nR; TR = 1.02 f o r  DR 

Methane: TR = 1 . 4 2  f o r  p R , n R ;  TR = 1.43 f o r  DR 

l/qR % DR f o r  n-Pentane a t  TR= 0.63 

R 

_ _ _  
.-.-. 
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RANDALL 6 

v i s c o s i t y ,  rlR,  and t h e  reduced densi ty--as  a f u n c t i o n  of reduced 

p r e s s u r e  i s  shown i n  F igure  3. 

qases  (6) and the v i s c o s i t y ,  n ,  i s  e s s e n t i a l l y  independent  of pres-  

s u r e  i n  t h a t  r e g i o n ,  t h e  d i f f u s i v i t y  i s  i n v e r s e l y  p r o p o r t i o n a l  t o  

d e n s i t v .  The d i f f u s i v i t y  of l i q u i d s  i s  i n v e r s e l y  p r o p o r t i o n a l  t o  

v i s c o s i t y .  A s  a n  approximation t o  l i q u i d  d i f f u s i v i t y  behavior ,  t h e  

i n v e r s e  of t h e  n-pentane reduced l i q u i d  v i s c o s i t y  d a t a  ( F i g u r e  2 ) i s  

qraphed i n  F i g u r e  3. While t h e  o r d i n a t e  placement of the complete 

curve is not  e x a c t  and may v a r y  by a s m a l l  f a c t o r ,  t h e  shape of t h e  

curve i s  v a l i d  and shows t h e  re la t ive i n s e n s i t i v i t y  of t h e  d i f f u -  

s i v i t y  o f  a l i q u i d  t o  p r e s s u r e .  The v a l u e  f o r  t h e  reduced d i f f u -  

q i v i t y  f o r  l i q u i d  methane a t  T = 0.62 and pR = 2.56 (corresponds R 
t o  I’ 1 .1 )  i s  about  0.1. Hence, i t  can be  s e e n  t h a t  t h e  d i f f u -  

s i v i t y  of a dense g a s  a t  -P and -T is a t  least  a f a c t o r  of t e n  

l a r g e r  t h a n  t h a t  of a l i q u i d .  

S ince  D i s  equal  t o  n / p  f o r  d i l u t e  

R 

The fo l lowing  d a t a  are presented  f o r  order-of-magnitude com- 

par i sons  of t h e  t h r e e  impor tan t  parameters :  

-3 Dense Gas 
‘“c, Pc 0.2 - 0.5  (1 - 3 )  x 10;; 0 .7  x 

. ‘ rc ,  4 P ,  0 . 4  - 0 .9  ( 3  - 9 )  x 10 0 . 2  x 10 

(0.2 - 2 )  x1~-5 -2 Liquid  
(organic solvents, mter)  0.6 - 1 . 6  (0.2 - 3) x 10 

a s e l f  d i f f u s i o n  f o r  Gas and Dense Gas; b i n a r y  mixture  f o r  Liquid .  

Consequent ia l  B e n e f i t s  of Dense G a s  P r o p e r t i e s  

’The l i q u i d - l i k e  d e n s i t i e s  of dense gases  r e s u l t  i n  l i q u i d - l i k e  

s o l v e n t  powers. T h i s  p r o p e r t y  and t h e  f a s t e r  m a s s  t r a n s p o r t  capa- 

b i l i t y  due t o  t h e  dense gas  v i s c o s i t y  and d i f f u s i v i t y  make dense 

gases  very  a t t r a c t i v e  as s o l v e n t s .  Bailes (7 )  h a s  r ev iewed  l i q u i d  
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PRESENT STATUS OF DENSE GAS APPLICATIONS 7 

s o l v e n t  e x t r a c t i o n  i n  organic  and petrochemical  i n d u s t r i e s  and 

noted t h a t  s o l v e n t  e x t r a c t i o n  i s  p a r t i c u l a r l y  important  i n  t h e  food 

and pharmaceut ical  i n d u s t r i e s  because many products  are thermal ly  

l a b i l e  and cannot b e  separa ted  by d i s t i l l a t i o n .  Obviously, major 

c o n s i d e r a t i o n s  i n  l i q u i d  e x t r a c t i o n  processes  are  t h e  choice  of 

s o l v e n t  inc luding  t h e  o p e r a t i n g  temperature  range and i t s  t o x i c i t y  

and t h e  s o l v e n t / s o l u t e  s e p a r a t i o n .  

b e  minimized because of expensive s o l v e n t  l o s s  and p o s s i b l e  con- 

tamina t ion  of t h e  product w i t h  t h e  s o l v e n t .  Often d i s t i l l a t i o n  i s  

r e q u i r e d  t o  improve s o l v e n t  recovery.  A s  an  a l t e r n a t i v e  s e p a r a t i o n  

2’ method which t y p i c a l l y  uses  b i o l o g i c a l l y  s a f e  gases  such as CO 

dense gas  e x t r a c t i o n  combines t h e  s e p a r a t i o n  processes  of l i q u i d  

e x t r a c t i o n  and d i s t i l l a t i o n  and i t  has  been proposed (8) t h a t  t h i s  

process  be c a l l e d  d e s t r a c t i o n .  Compared t o  t h e  o t h e r  s e p a r a t i o n  

techniques dense gas  e x t r a c t i o n  ( o r  d e s t r a c t i o n )  h a s  s e v e r a l  i m -  

p o r t a n t  c h a r a c t e r i s t i c s :  1) temperatures  are u s u a l l y  c l o s e  t o  

c r i t i c a l  temperatures  so  mild c o n d i t i o n s  can be used f o r  thermally 

l a b i l e  compounds, 2) dense gases  can d i s s o l v e  i n v o l a t i l e  compounds, 

3) compounds can b e  s e l e c t i v e l y  d isso lved  by changing t h e  d e n s i t y  

of t h e  gas ,  4 )  t h r e e  dense gas  parameters ,  d e n s i t y  a s  w e l l  as t e m -  

p e r a t u r e  and composition, can b e  e a s i l y  v a r i e d ,  5) e s s e n t i a l l y  com- 

p l e t e  s e p a r a t i o n  of s o l v e n t / s o l u t e  wi th  h igh  s o l v e n t  recovery can 

b e  accomplished by i so thermal  decompression o r  i s o b a r i c  h e a t i n g ,  

and 6)  t h e  s o l u t e s  can be f r a c t i o n a t e d  dur ing  t h e  s o l v e n t / s o l u t e  

s e p a r a t i o n .  Since chromatography i s  a m u l t i s t a g e  phase- t ransfer  

process ,  t h e  above comments a l s o  apply  t o  t h e  use  of dense gases  i n  

chromatography. 

Incomplete s o l v e n t  recoverymust  

Even though t h e  l i q u i d - l i k e  s o l v e n t  powers of dense gases  have 

been recognized f o r  over  100 y e a r s  (9,10),  t h e r e  w a s  r e l a t i v e l y  

l i t t l e  a p p l i c a t i o n  of dense gas  s o l v e n t s  u n t i l  about twenty y e a r s  

ago w i t h  t h e  e a r l y  experiments i n  dense gas chromatography. Within 

t h e  last t e n  y e a r s  and p a r t i c u l a r l y  t h i s  l a s t  year  t h e r e  has  been 

i n t e n s e  i n t e r e s t  i n  h igh  p r e s s u r e  f l u i d  mixtures  and dense gas  ex- 

t r a c t i o n  processes  (11-22,  137-150) e s p e c i a l l y  i n  t h e  food,  
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8 RANDALL 

pharmaceut ical ,  and c o a l  i n d u s t r i e s . *  Papers  presented  a t  t h r e e  

r e c e n t  symposia (8,23-36,154-159) o u t l i n e  t h e  r a p i d  growth of work 

i n  t h i s  a r e a .  S u b j e c t s  d i scussed  inc luded  dense gas  e x t r a c t i o n  of 

r a w  food and drug m a t e r i a l s ,  i n d u s t r i a l  p l a n t  des ign ,  energy con- 

sumption compared t o  convent iona l  s e p a r a t i o n  techniques ,  dense gas  

chromatography, and phase e q u i l i b r i a .  

_-I__- l h e o r e t i c a l  Approaches t o  S o l u b i l i t y  P r e d i c t i o n s  

Lrani and Funk (37) have o u t l i n e d  s e v e r a l  of t h e  t h e o r e t i c a l  

approaches used t o  estimate phase equilibria--many of which involve  

e m p i r i c a l  o r  semi-empir ical  equat ions  of s ta te .  The equat ion  of  

s ta te  d e s c r i p t i o n s  of phase e q u i l i b r i a  of compressed g a s  mixtures  

have dcaalt w i t h  a v a r i e t y  of s o l u t e s  ranging  from l i g h t  gases  (160- 

164) t o  heavy s o l i d  hydrocarbons (165-171) and have genera ted  d a t 2  

(e .g . ,  b i n a r y  i n t e r a c t i o n  parameters  (172)) u s e f u l  f o r  d e s c r i b i n g  

dense gas  systems i n c l u d i n g  t h o s e  dense gas  systems where t h e  s o l -  

v e n t  i s  t h e  gas  p l u s  a n  e n t r a i n e r .  P r a u s n i t z  (173) ,  O e l l r i c h  et a1 

(172) ,  and P e t e r  (174) compare s e v e r a l  of t h e  equat ion-of -s ta te  

approaches. Furthermore, Rowlinson (38,39) h a s  d iscussed  t h e  t h e r -  

modynamics of ( s u p e r ) c r i t i c a l  b i n a r y  s o l u t i o n s  as has  Schneider  

who has  a l s o  presented  d a t a  f o r  many systems (15,16,31,40,175-179) 

and reviewed t h e  exper imenta l  methods used (41) .  

A n  in-depth d i s c u s s i o n  of any of t h e s e  methods w i l l  no t  b e  

pursued h e r e ;  many of t h e  c i t e d  r e f e r e n c e s  c o n t a i n  comprehensive 

d i s c u s s i o n s  and l i t e r a t u r e  l i s t s  as  do s e v e r a l  of t h e  papers  i n  

t h i s  S p e c i a l  Topics i s s u e .  Another approach mentioned by o t h e r  

a u t h o r s  i n  t h i s  i s s u e  is  t h e  u s e  of t h e  Hildebrand s o l u b i l i t y  pa- 

rameter  developed by Giddings e t  a1 (42-44). This  scheme w i l l  be  

b r i e f l y  o u t l i n e d  t o  permi t  easy comparison. 

*In  t h e  area of s u p e r c r i t i c a l  e x t r a c t i o n / l i q u e f a c t i o n  of c o a l ,  
t h e  s u p e r c r i t i c a l  e x t r a c t i o n  process  h a s  become commonplace 
enough t h a t  t h e  emphasis i s  on t h e  e x t r a c t  a n a l y s i s  and not  on 
t h e  e x t r a c t i o n  procedure (e .g . ,  References 151-153). 
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PRESENT STATUS OF DENSE GAS APPLICATIONS 9 

The Hildebrand s o l u b i l i t y  parameter, 6 ,  o r i g i n a l l y  def ined  as 

t h e  square  r o o t  of t h e  molecular  cohesive energy p e r  u n i t  volume 

( t h e  i n t e r n a l  p r e s s u r e ) ,  is admi t ted ly  a g e n e r a l  q u a n t i t y  n o t  based 

on a p r e c i s e  model ( 4 5 ) ;  however, i t  has  been found t o  b e  q u i t e  u s e  

f u l  f o r  s o l u b i l i t y  p r e d i c t i o n s  f o r  a wide range of compounds. Gen- 

e r a l l y ,  i f  component s o l u b i l i t y  parameter  v a l u e s  a g r e e  t o  w i t h i n  

- +1 (ca l /cc)%,  those  components w i l l  probably be mutual ly  s o l u b l e .  

Various methods have been devised t o  c a l c u l a t e  s o l u b i l i t y  parameters 

f o r  l i q u i d s  and s o l i d s  and a l s o  f o r  compounds which form non-regular 

s o l u t i o n s  because of p o l a r i t y  and hydrogen bonding ( 4 6 , 4 7 ) .  An 

express ion  f o r  t h e  s o l u b i l i t y  parameter f o r  a gas  i s  obtained i n  

t h e  fol lowing manner. 

From elementary c o n s i d e r a t i o n s ,  t h e  i n t e r n a l  p r e s s u r e  ( P . )  i s  

given by: 

pi = (aE/avlT. 

Thus, f o r  a van d e r  Waals gas ,  

P = RT/(V-b) - a / V L ,  

t h e  i n t e r n a l  p r e s s u r e ,  (aE/aV)T, i s  found t o  b e  

2 (aE/av)T = a / v  

so t h a t  t h e  gas  s o l u b i l i t y  parameter i s  

b 
6 = a 2 / V .  

g 

( 3 )  

given  by 

(4) 

The parameter ,  a ,  i n  t h e  van der  Waals equat ion  can b e  eva lua ted  i n  

t e r m s  o f  t h e  c r i t i ca l  p r e s s u r e  (P ) and c r i t i ca l  volume (V ) ;  upon 

s u b s t i t u t i o n  one o b t a i n s  
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I 0 RANDALL 

where I', i s  t h e  s o l u b i l i t y  pa rame te r  of  t h e  g a s ,  P i s  t h e  c r i t i c a l  

p r e s s u r e  ( u n i t s  of c a l l c c ) ,  p i s  t h e  g a s  d e n s i t y ,  and p i s  t h e  gas 

c r i r - i c a l  d e n s i t y .  It w a s  found ( 4 2 )  t h a t  e x p e r i m e n t a l  r e s u l t s  were 

r e p r e s c n t  ed b e t t e r  by 

g 

s 

L$ 
where u n i t s  o f  P are  a t m o s p h e r e s a n d u n i t s  of 6 are ( c a l l c c )  . In  

the nbovc e q u a t i o n  p Q  i s  t h e  l i q u i d  d e n s i t y  of t h e  s u b s t a n c e  and i s  

( l i o i e n  such  t h a t  t h e  r educed  l i q u i d  d e n s i t y  ( p  l p  ) i s  abou t  2.66--  

i . e . ,  a b o u t  1 a t m  p r e s s u r e  and b o i l i n g  p o i n t  t e m p e r a t u r e  ( 4 2 ) .  

Assuming a r e g u l a r ,  s a t u r a t e d  ( z e r o  f r e e  ene rgy  of mix ing)  s o l u t i o n ,  

one o b t a i n s  

g 

Q c  

where X js t h e  s o l u t e  mole f r a c t i o n  of t h e  s o l u t i o n ,  X i s  t h e  g a s  

mole  C r a c t i o n ,  0 i s  t h e  volume f r a c t i o n  o f  t h e  g a s ,  V is  t h e m o l a r  

koltirne or t h e  s o l u t e ,  6 i s  t h e  s o l u t e  s o l u b i l i t y  pa rame te r  and S 

is t h e  gas s o l u b i l i t y  pa rame te r .  Expe r imen ta l ly ,  i t  h a s  been found 

1ha t :  

g 

g 

g 

l o g  Xo = AS + B6 + C (8 ) 
g g 

(cr s u i 3 s t i t u t i n g  f o r  6 
g '  

l o g  X = A ' p g L  + B ' p  + C) (9 ) 
g 

where I, B, and C are least s q u a r e  f i t  p a r a m e t e r s  f o r  a p a r a b o l i c  

e q u a t i u n .  The d e r i v a t i o n s  of t h e  above r e l a t i o n s h i p s  have b e e n p r e -  

s e n t e d  i n  d e t a i l  by Bowman ( 4 6 ) .  

S e v e r a l  i m p o r t a n t  p r o p e r t i e s  o f  dense  g a s  s o l u t i o n s  a r e  em- 

imdied i n  t h e  e q u a t i o n s  f o r  t h e  s o l u b i l i t y  pa rame te r  and t h e  s o l u t e  

so l  iib il i t y  : 
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PRESENT STATUS OF DENSE GAS APPLICATIONS 11 

1. The gas  s o l u b i l i t y  parameter  can  be  s e p a r a t e d  i n t o  two 

terms, 1.25P ' and p /pg .  The f i r s t  i s  r e f e r r e d  t o  as t h e  chemical 

e f f e c t .  It depends upon t h e  i d e n t i t y  of t h e  g a s - - s p e c i f i c a l l y  t h e  

i n t e r m o l e c u l a r  f o r c e s  of t h a t  compound. The second term is  a s t a t e  

e f f e c t .  

g 

2. A s  pg+ pi, a maximum v a l u e  i s  obta ined  f o r  6 . Hence, 

w h i l e  t h e r e  i s  a maximum v a l u e  a t  h igh  p r e s s u r e s ,  t h e  dense gas  

s o l u b i l i t y  parameter  can assume a whole range of v a l u e s  below t h a t  

maximum. The maximum v a l u e  of  6 i s  determined by gas  i d e n t i t y  
g 

w h i l e  a l l  o t h e r  v a l u e s  depend upon t h e  chosen p h y s i c a l  s ta te .  (A 

diagram comparing t h e  maximum 6 f o r  many gases  t o  t h e  l i q u i d  so l -  

u b i l i t y  parameters  of  common s o l v e n t s  h a s  been presented  i n  s e v e r a l  

p l a c e s  (42 ,46 ,48 ,49 ) . )  

g 

g 

3 .  There i s  a t h r e s h o l d  d e n s i t y  below which a s o l u t e  is not  

s o l u b l e  i n  t h e  dense s o l v e n t  gas .  (from 16 - 5 1 (ca l /cc) '  ) 

4 .  Because of t h e  p a r a b o l i c  s o l u t e  s o l u b i l i t y - d e n s e  g a s  den- 

s i t y  r e l a t i o n s h i p ,  t h e r e  i s  a maximum s o l u b i l i t y  a t  some d e n s i t y  s o  

t h a t  a t  even h i g h e r  d e n s i t i e s  t h e  s o l u b i l i t y  decreases .  The loca-  

t i o n  and magnitude of t h e  maximum i s  d i f f e r e n t  f o r  d i f f e r e n t s o l u t e /  

s o l v e n t  gas  p a i r s .  (Severa l  systems have been s t u d i e d  and are pre- 

s e n t e d  i n  Reference 4 6 . )  I t  should  b e  emphasized t h a t  t h e  s o l u b i l -  

i t y  f u n c t i o n  i s  a p a r a b o l i c  d e n s i t y  f u n c t i o n  and not n e c e s s a r i l y  a 

p a r a b o l i c  p r e s s u r e  f u n c t i o n  because of  t h e  very  n o n l i n e a r  pressure-  

d e n s i t y  r e l a t i o n s h i p  i n  t h e  v i c i n i t y  of t h e  c r i t i c a l  p o i n t .  

These p r o p e r t i e s  are  impor tan t  i n  e x t r a c t i o n  processes  as  w e l l  

as i n  t h e  more s p e c i a l i z e d  dense gas  chromatography. Examples of 

t h e  use  of dense g a s e s  as s o l v e n t s  i n  e x t r a c t i o n s  a r e  now presented.  

3 .  DENSE GAS EXTRACTION 

E x t r a c t i o n  us ing  dense gas  s o l v e n t s  has been used i n  a v a r i e t y  

of f ie lds- -e .g . ,  t h e  process ing  of food,  pharmaceut ica ls ,  petroleum 
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12 RANDALL 

products ,  and c o a l .  Probably t h e  method is  be ing  a c t i v e l y  developed 

t o  an even g r e a t e r  e x t e n t  than  presented  h e r e  o r  i n  two r e c e n t  re- 

views (180,181). Unsurpr i s ing ly ,  d e t a i l s  are not  r e a d i l y  a v a i l a b l e  

s i n c e  t h e s e  are  compet i t ive  i n d u s t r i a l  p rocesses .  S e v e r a l  examples 

w i l l  be  presented  i n  t h i s  p a r t  t o  i n d i c a t e  t h e  d i r e c t i o n  of t h e  

cur ren t  work i n  dense gas  e x t r a c t i o n  and r e l a t e d  h igh  p r e s s u r e  sys-  

t e m s .  

I n d u s t r i a l  Appl ica t ions  

One of t h e  e a r l i e s t  i n d u s t r i a l  a p p l i c a t i o n s  w a s  t h a t  of Katz 

and Whaley (50) where n a t u r a l  gas  a t  p r e s s u r e s  above 68  a t m  and 

temperatures  up t o  2OO0C was used t o  s e p a r a t e  l i q u i d  hydrocarbon 

mixtures .  T . P .  Zhuze e t  a1 have used s u p e r c r i t i c a l  gases  f o r  t h e  

de-asphal t ing  and d e r e s i n a t i o n  of petroleum, t h e  e x t r a c t i o n  of lan-  

o l i n  from w o o l  g r e a s e ,  and t h e  e x t r a c t i o n  of o z o c e r i t e  from i t s  

o r e s  (51-53). D e s a l i n a t i o n  of water has  been accomplished us ing  

l i q u i d  organic  s o l v e n t s  a t  e l e v a t e d  temperatures  ( o f t e n  j u s t  below 

c r i t i c a l )  p r e s s u r e s  ( 5 1 , 5 4 ) .  Zosel  has  pa ten ted  a process  f o r  t h e  

s e p a r a t i o n  of mix tures  of aluminum t r i a l k y l s  having a l k y l  groups of 

d i f f e r e n t  cha in  l e n g t h s  us ing  s u p e r c r i t i c a l  e thane  o r  e t h y l e n e  (55). 

Several  o ther  processes  pa ten ted  by Zosel  a r e  important  t o  t h e  food 

i n d u s t r y :  deodor iza t ion  of p l a n t  o i l s  (soybean, palm and peanut)  

w i t h  s imultaneous removal of f r e e  f a t t y  a c i d s  (56 )  us ing  C 0 2 ;  o i l  

e x t r a c t i o n  from soybean f l a k e s ,  corn ,  and bones us ing  propane, 

e thane ,  C02, o r  N 0 (57) ;  s imultaneous hydrogenat ion and deodoriza- 

t i o n  u f  Fats  and/or  o i l s  w i t h  a CO /H gas mixture  (58); and decaf-  

f e i n a t i o n  of c o f f e e  w i t h  s u p e r c r i t i c a l  C 0 2  ( 5 9 )  and s u p e r c r i t i c a l  

humid (-0) ( 6 0 ) .  0.  V i t z t h m  et  a1 have a l s o  pa ten ted  s i m i l a r  ex- 

t r a c t i o n s :  f a t s  and o i l s  from p l a n t  seeds  w i t h  s u b c r i t i c a l  gases  

(C02, SF CC1F3, CHF2C1, CF C 1 ,  CF CH 2, C3F8, N20, C 2 6 ’  H C 2 4  H and 

var ious  mixtures  of t h e s e  gases)  ( 6 1 ) ;  hops e x t r a c t i o n  w i t h  super-  

c r i t i c a l  GO2 ( 6 2 ) ;  cocoa b u t t e r  and aroma components (with i d e n t i -  

t i c a t i o n )  from cocoa beans w i t h  CO ( 6 3 , 6 4 ) ;  s p i c e  (b lack  pepper) 

2 

2 2  

6’ 3 

2 
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PRESENT STATUS OF DENSE GAS APPLICATIONS 13 

e x t r a c t i o n  w i t h  CO (65);  o i l  (conta in ing  f l a v o r  components) and 

c a f f e i n e  from c o f f e e  w i t h  C 0 2  (66-68); and n i c o t i n e  from tobacco 

us ing  C 0 2 ,  N 0,  A r ,  SF 

have a l s o  e x t r a c t e d  b l a c k  tea aroma c o n s t i t u e n t s  w i t h  s u p e r c r i t i c a l  

CO and then  i d e n t i f i e d  t h e  v o l a t i l e  components of t h e  e x t r a c t  using 

GC/MS (71) .  

2 

o r  halogenated hydrocarbons (69 ,70 ) .  They 2 6 

2 

Many of t h e  e x t r a c t i o n  processes  have developed beyond "bench- 

top  models." The dense gas  e x t r a c t i o n  of petroleum and o z o c e r i t e  

c i t e d  above w a s  used i n d u s t r i a l l y  i n  Russia  a s  e a r l y  as  1960. The 

Kerr-McGee Ref in ing  Corporat ion has  opera ted  a semicommercial p l a n t  

(750 b /d)  f o r  de-asphal t ing  of residuum o i l  ( 7 2 ) .  I n  t h i s  p l a n t  

s u p e r c r i t i c a l  s o l v e n t  recovery  r e s u l t e d  i n  a u t i l i t y  s a v i n g s  of 50% 

over  t h e  u s u a l  s o l v e n t  recovery methods of evapora t ion ;  a l s o  c i t e d  

w e r e  t y p i c a l  investment  sav ings  of about  20%. Even more r e c e n t l y  

Kerr-McGee (138,139) h a s  developed t o  t h e  p i l o t  p l a n t  level (163kg/  

h) a c r i t i c a l  s o l v e n t  deashing (CSD) process  t o  s e p a r a t e  a s h  from 

l i q u e f i e d  c o a l  ( i . e . ,  t h e  more f a m i l i a r  s o l v e n t  r e f i n e d  coal). Here, 

t h e  c r i t i c a l  s o l v e n t  i s  used t o  remove c o a l  l i q u e f a c t i o n  products  

from vacuum s t i l l  bottoms l e a v i n g  i n s o l u b l e  c o a l  and minera l  matter 

as a dry  f lowable a s h  concent ra te .  The c o a l  components d i s s o l v e d  

i n  the s o l v e n t  gas  can be  f r a c t i o n a t e d  ( o i l s ,  a s p h a l t e n e s ,  and 

m u l t i f u n c t i o n a l  compounds) t o  l i g h t e r  products  and a h e a v i e r  molten 

low-ash ( ~ 0 . 0 9 % )  f l u i d  which can be  s o l i d i f i e d  t o  t h e  product  c o a l .  

It i s  es t imated  t h a t  t h i s  process  coupled w i t h  a convent iona l  s o l -  

v e n t  r e f i n i n g  p l a n t  w i l l  be more c o s t  e f f e c t i v e  than  s i m i l a r l y s i z e d  

f i l t r a t i o n  o r  a n t i - s o l v e n t  p l a n t s .  Eggers (30,73) h a s  descr ibed  

t h e  development and p lanning  of l a r g e - s c a l e  i n d u s t r i a l  p l a n t s  f o r  

e x t r a c t i o n  of n a t u r a l  p r o d u c t s - - p a r t i c u l a r l y  w i t h  regard  t o  com- 

ponent d e s i g n ,  thermodynamic c a l c u l a t i o n s ,  power consumption ( s e e  

a l s o  Reference 37) and economic o p t i m i z a t i o n .  Zosel  (8) h a s  re- 

c e n t l y  descr ibed  t h r e e  e x t r a c t i o n  schemes t o  remove c a f f e i n e  from 

green c o f f e e  beans u s i n g  dense C02;  t h e  schemes w i l l  soon be p u t  

i n t o  commercial p roduct ion .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1 4  RANDALL 

P e t e r  and Brunner have a l s o  been granted  p a t e n t s  f o r  t h e  

d e c a f f e i n a t i o n  of c o f f e e  by two h i g h  p r e s s u r e  processes  ( 7 4 , 7 5 ) .  In 

one p r x e s s  ( 7 4 )  t h e  dense s o l v e n t  gas  c o n s i s t s  of a mixture  of a n  

e n t r a i n i n g  agent  ( a l c o h o l s ,  e s t e r s ,  ke tones ,  c h l o r i n a t e d  lower 

hydrocsrbons, formaldehyde d i m e t h y l a c e t a l )  and a compressed g a s  (N2, 

V 2 0 ,  CIS CC1F3, lower hydrocarbons) .  The second process  u t i l i z e d  

only l i q u i d  s o l v e n t s  ( e t h a n o l ,  methanol, e t h y l a c e t a t e ,  ace tone ,  and 

formaldehyde d imethylace ta l )  a t  tempera tures  of 35-50°C and pres-  

sures of 100-500 b a r .  While t h i s  process  i s  n o t  a dense  gas  ex- 

t r a c t i o n ,  t h e  amount of c a f f e i n e  e x t r a c t e d  increased  as a f u n c t i o n  

of p r e s s u r e  as o f t e n  repor ted  f o r  l i q u i d  e x t r a c t i o n s  a t  e l e v a t e d  

Ipressctres. 

2' 

An example of a pharmaceut ical  a p p l i c a t i o n  (76) is t h e  patented 

2 dense gay e x t r a c t i o n  of camomile ( M a t r i c a r i a  chamomilla) us ing  GO 

o r  N 0 a t  p r e s s u r e s  a t  least  1 . 2  t imes c r i t i c a l  p r e s s u r e  and t e m -  

p e r a t u r e s  less than  5OoC. The products  s e l e c t i v e l y  e x t r a c t e d  a r e  

b i s a b o l o l ,  i t s  oxides ,  p roazulenes ,  coumarins and f r a g r a n t  compo- 

nents  d h i l e  po lysacchar ides ,  a c i d s ,  and f l a v e n o i d s  a r e  not  e x t r a c t e d .  

'Iany o t h e r  examples of dense gas  e x t r a c t i o n  of components from raw 

i o a t e r i a l s  are g iven  i n  Table  1. 

2 

Severa l  a u t h o r s  (77-88), p a r t i c u l a r l y  Gangoli and 'Ihodos ( 8 9 ) ,  

have d iscussed  t h e  very  real  advantages of s u p e r c r i t i c a l  e x t r a c t i o n  

of coal t o  l i q u i d  fract ions,  a hydrogen-rich and minera l - f ree  s o l i d ,  

ind a porous non-caking char  r e s i d u e  which may be subsequent ly  gas- 

i f i e d .  A s  i n  t h e  c a s e s  of n a t u r a l  p roducts  and t h e  v e r y  s i m i l a r  

a p p l i c a t i o n  of c r i t i c a l  s o l v e n t  deashirig of (convent iona l )  s o l v e n t  

r e i i n e d  c o a l ,  s u p e r c r i t i c a l  c o a l  e x t r a c t i o n / l i q u e f a c t i o n  i s  r a p i d l y  

( leveloping from bench-scale  r e a c t o r  tests. A s m a l l  p i l o t  p l a n t  

(10 7 b / l i ,  o r  4 . 5  kg/h,  c o a l )  has  a l r e a d y  been c o n s t r u c t e d  i n  t h e  

' Jni ted Kingdom ( 8 7 ) .  Again, as  i n  t h e  o t h e r  examples, t h e  economic 

f a c t o r s  i n  t h i s  type of c o a l  process ing  are impor tan t ;  i n  t h i s  re -  

s p r c t  Maddocks and Gibson (82)  have shown t h a t  dense gas  e x t r a c t i o n  

:ompares favorably  w i t h  s o l v e n t  r e f i n i n g  and thermal  decomposition 

processes. 
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8 2  RANDALL 

( :eological  Appl ica t ions  

Dense gas  e x t r a c t i o n  could  be used t o  good advantage i n  geo- 

logica,. s t u d i e s  of rock  composition. For example, P e t e r s i l i e  and 

hijrensen (90) d e s c r i b e  f i r s t  t h e  s e p a r a t i o n  and GC a n a l y s i s  of  en- 

t r a i n e d  hydrocarbon gases  fol lowed by t h e  l i q u i d  s o l v e n t  e x t r a c t i o n  

a d  LK a n a l y s i s  of bi tuminous s u b s t a n c e s  i n  t h e i r  samples. Dense 

<;as ex t>rac t ion  w i t h  on- l ine  a n a l y s i s  would cons iderably  s i m p l i f y  

t h e  process .  This  type o f  e x t r a c t i o n / a n a l y s i s  procedure would be  

p a r t i c u l a r l y  h e l p f u l  i n  o i l - s h a l e  sample c h a r a c t e r i z a t i o n  ( t y p i c a l  

procedure i n  Reference 91) .  Geologis t s  are not  only i n t e r e s t e d  i n  

sample a n a l y s i s  bu t  a l s o  i n  s i m u l a t i n g  format ion- reac t ion  condi t ions 

(92,93)--often a t  e l e v a t e d  p r e s s u r e s  and temperatures .  These geo- 

log ica l  i n t e r e s t s  then  are analogous t o  h i g h  p r e s s u r e  chemical reac-  

t i o n  s t u d i e s ,  many of which have i n d u s t r i a l  a p p l i c a t i o n s :  polymeri- 

z a t i o n ,  hydrogenat ion,  c racking ,  and aldehyde,  a c i d  and a l c o h o l p r o -  

duc t  ion .  

High P r e s s u r e  Reac t ions  

Comments about  high p r e s s u r e  r e a c t i o n s  may seem i n a p p r o p r i a t e  

w i t h i n  a s e c t i o n  d e a l i n g  e x p r e s s l y  w i t h  e x t r a c t i o n .  However, i t  

has been p o s t u l a t e d  t h a t  i n  high p r e s s u r e  systems,  f l u i d s  a c t  bo th  

.is r e a c t a n t  and s o l v e n t  i n  some processes .  I n  t h e s e  systems some 

of  t h e  r e a c t a n t s  and products  w i l l  c e r t a i n l y  b e  i n  t h e  gas  ( f l u i d )  

phase and s o  on-l ine a n a l y s i s  would be a g r e a t  a i d  f o r  s t u d i e s  of 

h igh  p r e s s u r e  r e a c t i o n s  as w e l l  as t h e  descr ibed  e x t r a c t i o n s .  Weale 

( 9 4 )  has poin ted  out  t h a t  u t i l i z a t i o n  of h igh  p r e s s u r e  r e a c t i o n s  

has been hampered by t h e  l a c k  of d e t a i l e d  s t u d i e s  of r e a c t i o n  k i -  

n e t i c s  and mechanisms and thermodynamic d a t a  a t  h igh  p r e s s u r e s .  

React ions are s t u d i e d  i n  d i f f e r e n t  ways: 1) removal of a sample 

a f t e r  some d e f i n i t e  r e a c t i o n  t i m e ,  2) cont inuous removal of a 

sample dur ing  a r e a c t i o n  ( d i f f i c u l t  a t  h i g h  p r e s s u r e s )  and 3) con- 

t inuous  monitor ing of parameters  such as volume change, e l e c t r i c a l  

c o n d u c t i v i t y ,  and spec t rophotometr ic  ( u s e f u l  on ly  w i t h  w e l l  char-  

a c t e r i z e d  r e a c t i o n s ,  which a r e  r a r e l y  found) .  I n  a d d i t i o n  t o  being 
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PRESENT STATUS OF DENSE GAS APPLICATIONS 83 

d i f f i c u l t ,  sample removal f o r  monitor ing i n  smal l - sca le  r e s e a r c h  

s t u d i e s  may c o n s t i t u t e  removal of a n  a p p r e c i a b l e  amount of t h e r e a c -  

t i o n  s p e c i e s  and thereby d i s r u p t  t h e  system under s tudy  (95). Young 

has  d iscussed  experimental  methods f o r  s tudying  phase behavior  of 

mixtures  a t  h igh  temperatures  and p r e s s u r e s  and a l s o  mentioned s a m -  

p l i n g  d i f f i c u l t i e s  ( 9 6 ) .  

Often h igh  p r e s s u r e s  n o t  only e l i m i n a t e  t h e  need f o r  h igh  t e m -  

p e r a t u r e s  ( thereby  avoid ing  decomposition) b u t  a l s o  provide  new 

r e a c t i o n  schemes. L u f t  (97 )  and p a r t i c u l a r l y  Thies  (98) have d i s -  

cussed t h e  k i n e t i c  a s p e c t s  of h i g h  p r e s s u r e  r e a c t i o n s  i n c l u d i n g  

ra te  c o n s t a n t  dependence on c o m p r e s s i b i l i t i e s ,  molar volumes, sol- 

v a t i o n  e f f e c t s ,  and v i s c o s i t y .  A l so ,  Thies  d e s c r i b e s  t h e  r e a c t i o n  

pa th /product  s e l e c t i v i t y  t h a t  i s  p o s s i b l e  w i t h  p r e s s u r e  a s  t h e  con- 

t r o l l i n g  f a c t o r .  Among t h e  several examples p r e s e n t e d  were the 

r e a c t i o n  of CO and a n i l i n e  t o  g i v e  3-phenyl-2,4-quinozoline dione  

(vs d iphenylurea) ,  Diels-Alder r e a c t i o n s ,  t h e  s y n t h e s i s  of hexa- 

methylacetonoxime from hexamethylacetone, and t h e  increased  y i e l d  of 
2-ni t ro-1,3-xylol  from m-xylol. I r a n i  and Funk (37)  have b r i e f l y  

o u t l i n e d  some systems i n  which t h e  s u p e r c r i t i c a l  s o l v e n t  i s  not  

i n e r t  and i n f l u e n c e s  t h e  r e a c t i o n  products :  i s o m e r i z a t i o n o f  normal 

p a r a f f i n s ,  decrease  i n  a s p h a l t e n e  products  i n  c o a l  l i q u e f a c t i o n ,  

and convers ion  of s u l f u r  and n i t r o g e n  t o  H S and NH i n  t h e  treat- 

ment of hydrocarbons. S i m i l a r l y ,  Menshutkin type  r e a c t i o n s ,  

(C H ) N + C H I 3 ( C  H ) N" + I-, i n  s u p e r c r i t i c a l  i sopropanol  and 

methanol a t  v a r i o u s  c o n d i t i o n s  have been s t u d i e d  t o  a s c e r t a i n  t h e  

dependence of t h e  volume of a c t i v a t i o n  upon temperature  and pres-  

s u r e  ( 9 9 ) .  Metal amides, imides ,  and n i t r i d e s  have been synthesized 

us ing  s u p e r c r i t i c a l  ammonia and metals and m e t a l  sa l t s  (100). 

2 

2 3 

2 5 3  2 5  2 5 4  

DGC/MS as a n  On-Line D e t e c t o r  f o r  High P r e s s u r e  G a s  Systems 

Dense gas  chromatography, d i scussed  i n  t h e  n e x t  s e c t i o n ,  would 

be a p p l i c a b l e  f u r  product  a n a l y s i s  i n  many of t h e  e x t r a c t i o n  and 

k i n e t i c s  a p p l i c a t i o n s  of dense  gases. I n  p a r t i c u l a r ,  a DGC/MSin- 

s t rument  as descr ibed  i n  S e c t i o n  5 could be  used t o  s e p a r a t e ,  
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i d e n t i i y ,  and mon i to r  c o n t i n u o u s l y  t h e  v a r i o u s  s p e c i e s  i n  t h e d e n s e  

gas  phase  a t  h i g h  p r e s s u r e s ,  e l i m i n a t i n g  t h e  decompression fo l lowed  

5 y  c x t r a  sample h a n d l i n g  f o r  a n a l y s i s  by G C ,  HPLC, I R ,  e t c .  

4 .  PRIOR DENSE GAS CHROMATOGRAPHY STUDIES 

S i x  reviews of the work done i n  DGC d e t a i l  t h e  theo ry ,  i n s t r u -  

mc,ntation, chromatographic  materials and performance,  and a n a l y t i c a l  

,tnd phvsicochemical  a p p l i c a t i o n s  of DGC ( 4 8 ,  101-103,  1 7 6 ,  1 8 2 ) .  A l l  

systems and c o n d i t i o n s  s t u d i e d  t o  d a t e  a r e  o u t l i n e d  i n  Tab le  1 .  

lt(!C- Compared t o  GC and LCX 

As expec ted  from t h e  p r o p e r t i e s  of s o l v e n t  dense g a s e s ,  DGC 

coinbines c h a r a c t e r i s t i c s  of  b o t h  g a s  and l i q u i d  chromatographies .  

A. CC-type advan tage  i s  t h e  speed o f  s e p a r a t i o n  due t o  t h e  low v i s -  

c o s i t y  and h i g h  d i f f u s i v i t y  of t h e  g a s .  I n  a packed column a c r o s s  

which t h e r e  i s  a c o n s t a n t  p r e s s u r e  d rop ,  t h e  v e l o c i t y  of t h e  f l u i d  

is i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  v i s c o s i t y  so  lower  v i s c o s i t i e s l e a d  

t o  f a s t e r  flow rates. I f  t h e  f l u i d  v e l o c i t y  is c o n s t a n t ,  t h e  p re s -  

s u r e  d rop  i s  d i r e c t l y  p r o p o r t i o n a l  t o  v i s c o s i t y  and so lower  v i s -  

c o s i t i e s  r e q u i r e  less p r e s s u r e  d rop  t o  o b t a i n  a g iven  f low r a t e .  

However, a h i g h  d i f f u s i v i t y  a s  i n  GC c o n t r i b u t e s  t o  l o n g i t u d i n a l  

zone s p r e a d i n g  so  lower d i f f u s i v i t i e s  improve r e s o l u t i o n  b u t  a l s o  

i n c r e a s e  s e p a r a t i o n  times. D i f f u s i v i t i e s  i n t e r m e d i a t e  between 

t h o s e  Of l i q u i d s  and g a s e s  shou ld  r e s u l t  i n  f a s t e r  s e p a r a t i o n s  

( i . e . ,  f a s t e r  t h a n  LC)  and l e s s  zone s p r e a d i n g  ( i . e . ,  less thanGC). 

Both pa rame te r s  are i n c o r p o r a t e d  i n  t h e  d imens ion le s s  Reynolds 

number: 

packin:; p a r t i c l e s ;  n ,  v i s c o s i t y ) .  For  a packed bed a change from 

l amina r  t o  t u r b u l e n t  flow--and improved m a s s  t r anspor t - -occur s  f o r  

R e  = p v d /q ( p ,  d e n s i t y ;  v ,  v e l o c i t y ;  dp ,  d i ame te r  of 
P 

“DGC-dense gas  chromatography; GC-gas chromatography; LC-liquid 
chromatography; HPLC-high performance l i q u i d  chromatography; 
MS-mass s p e c t r o m e t e r .  
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v a l u e s  of t h e  Reynolds number i n  t h e  range of 1-10 t o  1-100 ( 1 0 4 ) .  

For t y p i c a l  DGC condi t ions  ( say ,  CO 2 
gfmL, a v e l o c i t y  of 10 c m / s ,  a packing p a r t i c l e  diameter  of 30 pm, 

and a v i s c o s i t y  of 8 x 10 poise ,  t h e  Reynolds number i s  30 and s o  

t h e  flow probably has become t u r b u l e n t .  

a t  4OoC) with  a d e n s i t y  of 0.8 

-4 

Usually i n  gas  chromatography t h e  mobile gaseous phase s e r v e s  

one purpose: zone movement. However, t h e r e  has  been some work i n  

GC i n  which steam and organic  vapors  are used as  t h e  mobile phase. 

A review by Rudenko e t  a1 ( 4 9 )  o u t l i n e s  t h e  work i n  t h i s  area and 

cons iders  t h e  e f f e c t s  on t h e  chromatographic HETP ( p l a t e  h e i g h t )  as 

w e l l  as reviewing dense gas  chromatography as an  ex tens ion  t o  t h e s e  

s t u d i e s .  Various c h a r a c t e r i s t i c s  of t h e s e  systems as d e t a i l e d  by 

Rudenko e t  a1 are 1) column e f f i c i e n c y  i s  increased ,  2) i t  i s  pos- 

s i b l e  t o  chromatograph ( a n a l y t i c a l l y  and p r e p a r a t i v e l y )  h i g h l y p o l a r ,  

i n v o l a t i l e  compounds a t  temperatures  of 50-1OO0C and upward, 3) there  

is no need f o r  column d e a c t i v a t i o n ,  4 )  a n a l y s i s  t i m e  is reduced,  

and 5) t h e  method i s  very  u s e f u l  f o r  a n a l y s i s  of aqueous s o l u t i o n s  

and d i s p e r s i o n s .  Nonaka (105) has  presented  a n  e x t e n s i v e  review 

cons ider ing  steam and steam mixtures  a s  t h e  mobile phase. H e  

maintains  t h a t  t h e r e  i s  probably l i t t l e  i n t e r a c t i o n  between s o l u t e  

and mobile phase molecules because of t h e  low d e n s i t y  of t h e  mobile 

phase and states t h a t  s t r a i g h t f o r w a r d  evidence of i n t e r a c t i o n  has  

n o t  y e t  been obtained.  However, t h e  mobile phase probably d e a c t i -  

v a t e s  t h e  s t a t i o n a r y  phase i n  gas-so l id  chromatography and any 

a c t i v e ,  uncoated sites i n  gas- l iqu id  chromatography. S t a t i o n a r y  

phase modi f ica t ion  h a s  been f u r t h e r  s t u d i e d  by Parcher  and Westlake 

(106): t h e  p o l a r i t y  of a l i q u i d  s t a t i o n a r y  phase i s  a l t e r e d  by the 

mobile phase composition. Hence, t h e s e  GC s t u d i e s  wi th  steam and 

organic  vapors  are p e r t i n e n t  t o  DGC s i n c e  they emphasize t h e  i n t e r -  

a c t i o n  of t h e  mobile phase w i t h  t h e  column s t a t i o n a r y  phase and 

may i n d i c a t e  t h e  i n t e r a c t i o n  ( t o  a n  undetermined e x t e n t )  of t h e  

mobile phase wi th  t h e  s o l u t e .  

I n  l i q u i d  chromatography t h e  mobile phase s e r v e s  two purposes: 

zone movement and s o l v a t i o n .  Hence, DGC i s  s imilar  t o  LC i n  t h a t  
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I X C  may b e  used  t o  d i s s o l v e  and e l u t e  h i g h  m o l e c u l a r  we igh t  com- 
pounds,  polymers ,  b i o l o g i c a l  m o l e c u l e s ,  t h e r m a l l y  u n s t a b l e m o l e c u l e s ,  

and i n v o l a t i l e f ;  mo lecu le s  because  o f  t h e  solvent-soluteinteractions. 

' lhe dense g a s  s o l v e n t  power is a f u n c t i o n  n o t  on ly  of t h e p a r t i c u l a r  

s o l v e n t  g a s  used  (LC p r o p e r t y )  b u t  a l s o  of t h e  g a s  d e n s i t y .  One 

m a n i f e s t a t i o n  of t h e  dens i ty -dependen t  s o l v e n t  power i s  t h e  e x i s -  

t e n c e  o f  a t h r e s h o l d  p r e s s u r e  as shown by t h e  work of Giddings et 

a1 (42 ,44 )  and K l e s p e r  et a1 (107) .  Below t h e  t h r e s h o l d  p r e s s u r e  

of a g i v e n  s o l v e n t / s o l u t e  sys t em,  t h e r e  w i l l  b e  no s o l u t i o n  of t h e  

e .olute .  The d e n s i t y  v a r i a b l e  is a n  advan tage  un ique  t o  DGC. I n  

T G C  t h e  s o l v e n t  power may b e  q u i c k l y  and e a s i l y  v a r i e d  by d e n s i t y  

(42,44,46)--pressure (108-114)--programing as w e l l  as by temperature  

programming ( t y p i c a l  i n  GC) a n d  p o s s i b l y  s o l v e n t  compos i t ion  pro- 

gramming ( t y p i c a l  i n  LC). 

l ' r e s su re  Programming 

Uartmann (113) h a s  p u b l i s h e d  chromatograms o f  n-alkanes (n  = 5 

t o  20) and c y c l i c  hydrocarbons a t  40 and 55OC f o r  v a r i o u s  column 

p a c k i n p  and C0 p r e s s u r e  programming i n  t h e  r a n g e  of 51 t o  1 3 4 a t m .  

He n o t e s  t h a t  t h e  p re s su re -dependen t  s o l v e n t  power of t h e  mob i l e  

phase  js t h e  d e c i s i v e  f a c t o r  i n  d e t e r m i n i n g  t h e  m i g r a t i o n  ra te  and 

r e s o l u t i o n .  Nieman a n d  Rogers  (114)  have  found t h a t  t h e r e  i s  a n  

opkimum tempera tu re  which depends upon t h e  m o l e c u l a r  we igh t  r ange  

when l i n e a r  p r e s s u r e  programming i s  a p p l i e d  t o  s e p a r a t i n g  t h e  oligc- 

mers of t h e  s i l i c o n e  polymer,  DC-710, w i t h  n-pentane as t h e  mobile  

phase.  K l e s p e r  and Hartmann (108) have  s t u d i e d  t h e  e f f e c t  o f  

2 

When a molecu le  is d i s s o l v e d  by a d e n s e  g a s ,  t h e  p r o c e s s  i s o f t e n  
d e s c r i b e d  as v o l a t i l i z a t i o n  s i n c e  t h e  s o l u t e  has become p a r t  of 
t h e  gas  phase .  Because of  t h e  a c t i o n  of the d e n s e  g a s ,  t h e  s o l -  
u t e  c o n c e n t r a t i o n  i n  t h e  g a s  p h a s e  c a n  i n c r e a s e  by more t h a n  a 
f a c t o r  of l o l o  compared t o  t h e  expec ted  vapor  p r e s s u r e  a t  a g i v e n  
t e m p e r a t u r e  ( 2 9 ) .  Hence, mo lecu le s  c o n s i d e r e d  i n v o l a t i l e  a t  
t y p i c a l  GC c o n d i t i o n s  may b e  v o l a t i l i z e d  a t  t e m p e r a t u r e s  s i g n i f -  
i c a n t l y  lower  t h a n  GC c o n d i t i o n s .  
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p r e s s u r e  programming of v a r i o u s  mixtures  of  n-pentane and methanol 

mobile  phase upon t h e  r e s o l u t i o n  of s t y r e n e  ol igomers  f o r  a n a l y t i c a l  

and p r e p a r a t i v e  s c a l e  DGC. J e n t o f t  and Gouw (109) n o t e  t h a t  t h e  

p r e s s u r e  programming e l u t i o n  t i m e  (95% n-pentane/methanol) of 

coronene is one-third t h a t  of t h e  i s o b a r i c  c o n d i t i o n s .  Thei r  

s t u d i e s  show t h a t  p o l y s t y r e n e  ol igomer e l u t i o n  times are a l s o  up t o  

t h r e e  t i m e s  as long  w i t h  i s o b a r i c  c o n d i t i o n s  as w i t h  p r e s s u r e  pro- 

gramming. F i n a l l y ,  work by Bowman ( 4 6 )  i n d i c a t e s  t h a t  l i n e a r  

d e n s i t y  programming is s u p e r i o r  t o  l i n e a r  p r e s s u r e  programming be- 

cause  of t h e  l a r g e  change i n  d e n s i t y  caused by a s m a l l  change i n  

p r e s s u r e  n e a r  t h e  c r i t i c a l  temperature  ( s e e  F igure  1 ) .  

Capaci ty  R a t i o  Temperature Dependence 

S i e  and R i j n d e r s  (115,116) f i r s t  noted t h e  s t r o n g  temperature  

dependence of t h e  c a p a c i t y  r a t i o ,  a modif ied p a r t i t i o n  c o e f f i c i e n t  

( s t a t i o n a r y  phase s o l u t e / g a s  phase s o l u t e ) ,  i n  t h e  r e g i o n  c l o s e  t o  

and above t h e  c r i t i ca l  temperature  of t h e  gas .  The s a m e  behavior  

w a s  a l s o  observed by Nieman and Rogers (114) i n  t h e i r  experiments  

which inc luded  mixed s o l v e n t  gases .  J u s t  above t h e  c r i t i c a l  t e m -  

p e r a t u r e ,  because of t h e  h i g h  d e n s i t y  and t h e  s t r o n g  i n t e r m o l e c u l a r  

f o r c e s  of t h e  dense s o l v e n t  gas ,  more s o l u t e  i s  d i s s o l v e d  by t h e  

dense gas  r e s u l t i n g  i n  a low v a l u e  f o r  t h e  p a r t i t i o n  c o e f f i c i e n t .  

A s  t h e  temperature  i s  i n c r e a s e d ,  t h e  d e n s i t y  of t h e  gas  d e c r e a s e s  

w i t h  a s imultaneous l e s s e n i n g  of i t s  s o l v e n t  power so  more s o l u t e  

is p a r t i t i o n e d  i n  t h e  s t a t i o n a r y  phase and t h e  p a r t i t i o n  c o e f f i -  

c i e n t  i n c r e a s e s .  A t  even h i g h e r  tempera tures  t h e  p a r t i t i o n  co- 

e f f i c i e n t  may remain e s s e n t i a l l y  c o n s t a n t  o r  d e c r e a s e  aga in .  Be- 

yond t h i s  maximum ( o r  l e v e l i n g  p o i n t )  i n  t h e  p a r t i t i o n  c o e f f i c i e n t -  

temperature  dependence t h e  behavior  i s  determined by t h e  temper- 

a ture-dependent  v o l a t i l i t y  of t h e  s o l u t e  as i n  convent iona l  GC.  I f  

bo th  t h e  temperature  and t h e  p r e s s u r e  are i n c r e a s e d  so t h a t  a l i q -  

u i d - l i k e  d e n s i t y  i s  main ta ined ,  s o l u t e  c o n c e n t r a t i o n  i n  t h e  dense 

gas  phase may i n c r e a s e  from t h e  s o l v e n t  i n t e r a c t i o n  and from t h e  

increased  s o l u t e  vapor  p r e s s u r e .  Therefore ,  temperatures  need not  
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88 RANDALL 

h e  l i m i t e d  t o  a r a n g e  n e a r  c r i t i ca l  as l o n g  as t h e  p r e s s u r e  c a n  b e  

s u f f i c i e n t l y  i n c r e a s e d .  While h i g h e r  t e m p e r a t u r e s  and p r e s s u r e s  

may be  advan tageous  i n  some c a s e s  ( 2 8 ) ,  s u c h  c o n d i t i o n s  w i l l  n o t  b e  

s u i t a b l e ,  f o r  t h e r m a l l y  l a b i l e  compounds. 

S t a t i o n a r y  Phases  

S i n c e  d e n s e  g a s e s  are s u c h  power fu l  s o l v e n t s  € o r  l a r g e ,  i n v o l -  

i t i l e  n o l e c u l e s ,  the s t a t i o n a r y  p h a s e  i n  dense  g a s - l i q u i d  chroma- 

tog raphy  must b e  chosen  w i t h  care (101) .  However, t h i s  problemmay 

have been a l l e v i a t e d  by the new bonded p h a s e  p a c k i n g s  developed f o r  

IIpI,C. 311e bonded p h a s e  p a c k i n g s  and t h e  p e l l i c u l a r  o r  s u p e r f i c i a l l y  

po rous  g l a s s  beads a p p e a r  t o  b e  w e l l - s u i t e d  f o r  UGC: t h e  s m a l l  par-  

t i c l e  diameters i n  narrow r a n g e s  y i e l d  lower t h e o r e t i c a l  p l a t e  

h e i g h t s  (117-119) as shown i n  GC and HPLC; however,  the  lower vis-  

c o s i t y  of  a d e n s e  g a s  compared t o  l i q u i d s  c a u s e s  a lower  p r e s s u r e  

d rop  across t h e  column t h a n  i n  HPLC (117) .  

t,i t h e  above  d i s c u s s i o n ,  no d i f f e r e n t i a t i o n  h a s  b e e n  made be- 

tween l i q u i d  and s o l i d  s t a t i o n a r y  p h a s e s .  I n  d e n s e  g a s - s o l i d  chro-  

matography (116)  t h e  d e n s e  g a s  i s  a d s o r b e d  o n t o  t h e  s o l i d  a d s o r b e n t  

modifying i t  in s i t u ,  t h e r e b y  e l i m i n a t i n g  t h e  need f o r  t h e  u s u a l  

d e a c t i g a t i o n  treatments. The s o l u t e  peaks  are s h a r p  and symmetrical  

w i t h  none of t h e  t y p i c a l  GSC t a i l i n g .  I t  has been  p roposed  t h a t t h e  

Jense f l u i d  c o a t s  t h e  s o l i d  s u r f a c e  s o  t h a t  the mechanism i s  a c t u a l l y  

f l r i i + l i q u i d  p a r t i t i o n .  I n  t y p i c a l  GSC the o p e r a t i n g  t empera tu res  

are  101)-300°C above t h e  b o i l i n g  p o i n t s  of t h e  s o l u t e s  t o  b e  sepa -  

i a t e d ,  f a r  h i g h e r  t h a n  i s  r e q u i r e d  € o r  t h e  same s o l u t e s  i n  GLCwhere 

i t e m p e r a t u r e  g i v i n g  a v a p o r  p r e s s u r e  on the o r d e r  of 1 0 T o r r  (120) 

may be used.  Dense g a s - s o l i d  and - l i q u i d  ch romatograph ies  c a n  

e l f e c t  s e p a r a t i o n s  a t  s i g n i f i c a n t l y  lower t e m p e r a t u r e s  s i n c e  t h e  

winimiirn o p e r a t i n g  t e m p e r a t u r e  i s  de te rmined  on ly  by t h e  c r i t i c a l  

temper , i ture  o f  t h e  s o l v e n t  d e n s e  g a s .  Advantages of d e n s e  gas-  

~ ~ o l i d  c-tiromatography are  t h e  easier  s e p a r a t i o n s  of c l o s e - b o i l i n g  

i somer i c  hydroca rbons  t h a n  w i t h  d e n s e  g a s - l i q u i d  chromatography 
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PRESENT STATUS OF DENSE GAS APPLICATIONS 89 

and t h e  f a s t e r  s e p a r a t i o n s  than  w i t h  l i q u i d - s o l i d  chromatography 

(116) .  

Chromatograph System S e l e c t i v i t y  

S e l e c t i v i t y  i n  DGC i s  determined not  j u s t  by t h e  choice  of t h e  

s o l v e n t  gas  (and i t s  temperature  and pressure)  a l o n e  but  by t h e  

combination of t h e  s o l v e n t  gas  and t h e  column packing (101). I n  

dense gas-sol id  chromatography, type s e l e c t i v i t y  is achieved wi th  

a p o l a r  support  and a non-polar dense gas  whi le  l i g h t f h e a v y  selec- 

t i v i t y  i s  achieved w i t h  a p o l a r  suppor t  and a p o l a r  gas (116) .  In 

dense gas- l iqu id  chromatography, type s e l e c t i v i t y  i s  s i m i l a r l y  b e s t  

ob ta ined  with a p o l a r  s t a t i o n a r y  phase and a non-polar dense gas ,  

but  b e t t e r  l i g h t f h e a v y  s e l e c t i v i t y  i s  obta ined  w i t h  a non-polar 

s t a t i o n a r y  phase and a p o l a r  dense gas  (111-115). The p a r a b o l i c  

s o l u t e  s o l u b i l i t y - s o l v e n t  d e n s i t y  r e l a t i o n s h i p  a f f e c t s  t h e  s e l e c t i v -  

i t y .  

wi th  a non-polar dense gas  and a p o l a r  s t a t i o n a r y  phase whi le  in-  

c r e a s i n g  t h e  d e n s i t y  r e s u l t s  i n  type s e l e c t i v i t y  (101) .  

Lower d e n s i t i e s  may s h o w , t y p i c a l  GC b o i l i n g  poin t  s e l e c t i v i t y  

While t h e  examples g iven  i n  t h e  l a s t  s e c t i o n  and those  c i t e d i n  

Table  1 c l e a r l y  show t h e  wide range of p o s s i b l e  a p p l i c a t i o n s  of DGC, 

progress  i n  t h i s  area has been hampered by t h e  l a c k  of a s e n s i t i v e  

and s e l e c t i v e  d e t e c t o r  even though some a t tempts  have been made t o  

overcome d e t e c t i o n  problems (121,122,183). U l t r a v i o l e t  d e t e c t i o n  

l i m i t s  t h e  s o l u t e  c l a s s ,  flame i o n i z a t i o n  d e t e c t i o n  l i m i t s  t h e  sol-  

vent  gas ,  and thermal conduct iv i ty  d e t e c t i o n  as w e l l  as t h e  f i r s t  

two methods l a c k s  s p e c i f i c i t y .  Thus, r e s e a r c h  w a s  i n i t i a t e d  i n  

view of t h e  demonstrated p o s s i b i l i t i e s  of DGC and t h e  g r e a t  exten- 

s i o n s  of DGC t h a t  would be p o s s i b l e  wi th  a m a s s  spectrometer  serv-  

ing  as a h ighly  s e n s i t i v e  and s e l e c t i v e  d e t e c t o r .  
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90 RANDALL 

An i n t e r f a c e  between a m a s s  s p e c t r o m e t e r  and a dense  g a s  chro- 

maLograph i s  made i n s t r u m e n t a l l y  d i f f i c u l t  by t h e  necessa ry  l a r g e  
-5 p r e s s u r e  drop (200-300 a t m  t o  10 T o r r )  and t h e  s e n s i t i v e  d e n s i t y -  

dependent s t a b i l i t y  of dense  g a s / s o l u t e  m i x t u r e s .  Thus, i t  i s  

r e a s o n a b l e  t o  i n v e s t i g a t e  t h e  l i m i t a t i o n s  of bo th  GC/MS and HPLC/MS 

t o  e s t a b l i s h  t h e  f a c t  t h a t  DGC/MS is  p o s s i b l y  s u p e r i o r  t o  t h e  o t h e r  

t echn iques  f o r  a l a r g e  range of compounds. 

GC/MS 

The a b i l i t y  of  a modern g a s  chromatograph/mass s p e c t r o m e t e r /  

computer system (GC/MS/COM) t o  s e p a r a t e  complex m i x t u r e s ,  perform 

on- l ine  m a s s  a n a l y s i s ,  and u s u a l l y  de t e rmine  t h e  composi t ion by 

s e a r c h i n g  f i l e s ,  a l l  i n  pe rhaps  h a l f  a n  hour ,  h a s  t r emendous lya ided  

r e s e a r c h  i n  a wide v a r i e t y  of f i e l d s ,  i n c l u d i n g  t h e  a r e a s  of h e a l t h ,  

p o l l u t i o n ,  and s y n t h e t i c  f u e l  development.  However, GC/MS can  b e  

used on ly  w i t h  s u b s t a n c e s  hav ing  some v o l a t i l i t y  ( a  vapor  p r e s s u r e  

of 10 t o  60 T o r r )  w i t h o u t  t he rma l  decomposi t ion and,  as observed by 

Gouw e t  a1 (351, on ly  abou t  10% of t h e  two m i l l i o n  compounds known 

can be  t h u s  c l a s s i f i e d .  While d e r i v a t i z a t i o n  of i n v o l a t i l e  o r  

t he rma l ly  l a b i l e  compounds o f t e n  p e r m i t s  t h e i r  a n a l y s i s  by GC/MS,  

t h i s  t e c h n i q u e  i s  v e r y  d i f f i c u l t  t o  app ly  t o  a m i x t u r e  o f  compounds 

o f  unknown compos i t ion  and s t r u c t u r e .  Also t h e r e  can b e  d i f f i c u l -  

t i e s  i n  d e r i v a t i z a t i o n  of known compounds: n o n - q u a n t i t a t i v e  con- 

v e r s i o n ,  f o r m a t i o n  of mixed p r o d u c t s ,  and unexpected r e a c t i o n s  

(123). 

nxc/Ms 

Modern HPLC s e p a r a t e s  many m i x t u r e s  t h a t  canno t  b e  ana lyzed  by 

CC be(-ause t h e  moving phase  s e r v e s  two purposes :  s o l v a t i o n  and 

zone movement. Because of t h e  mobile  phase  i n t e r a c t i o n  w i t h  t h e  

s o l u t e  and t h e  mi ld  o p e r a t i n g  t empera tu res  of  HPLC, t h i s  a r e a  of 

chromatography is s u i t a b l e  f o r  a n a l y s i s  of  i n v o l a t i l e  a n d / o r  t h e r -  

ma l ly  J a b i l e  compounds ( " t h e  o t h e r  90%").  HPLC, l i k e  DGC, i s  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



PRESENT STATUS OF DENSE GAS APPLICATIONS 91 

l i m i t e d  by t h e  l a c k  of a s e n s i t i v e  and s e l e c t i v e  d e t e c t o r  except  i n  

t h e  r e c e n t l y  developing area of HPLCIMS. S e v e r a l  reviews (124,184, 

185) d e s c r i b e  and e v a l u a t e  the v a r i o u s  HPLCIMS i n t e r f a c e s  and out-  

l i n e  r e p r e s e n t a t i v e  a p p l i c a t i o n s .  

p e r a t u r e s  f o r  both t h e  s o l u t e  and s o l v e n t  (125,126) are used par-  

t i c u l a r l y  w i t h  probe i n s e r t i o n  and moving b e l t f w i r e  t r a n s p o r t  

des igns .  

t echniques  which decrease  s e n s i t i v i t y  (127) ,  high p r e s s u r e  chemical 

i o n i z a t i o n  techniques  which may have a v a r i a b l e  chemical  i o n i z a t i o n  

agent  due t o  s o l v e n t  g r a d i e n t  e l u t i o n  (128-131), a s i l i c o n e  rubber  

membrane s e p a r a t o r  which e n r i c h e s  t h e  e l u e n t  i n  s o l u t e  b u t  l i m i t s  

t h e  type  s o l v e n t s  used (132) ,  o r  h igh  temperature  hydrogenat ion of  

s o l u t e s  which may r e s u l t  i n  complex mass s p e c t r a  (133) .  G a m e s  e t  

a l  (123) have a l s o  reviewed HPLCIMS i n t e r f a c e s  s p e c i f i c a l l y  com- 

par ing  t h e  s p l i t  system us ing  t h e  HPLC s o l v e n t  as a chemical ion- 

i z a t i o n  (CI) reagent  gas  and t h e  b e l t  t r a n s p o r t  system s i n c e  t h e s e  

two methods are most capable  of r o u t i n e  a p p l i c a t i o n  i n  t h e i r o p i n i o n .  

The f i r s t  method has  as i t s  d isadvantages :  1) 1% of e l u a t e  i n t r o -  

duced t o  t h e  m a s s  spec t rometer ,  2 )  v a r i a b l e  C I  reagent  gas ,  and 3) 

l i m i t a t i o n  t o  C I  mode mass spectrometry.  While t h e  b e l t  t r a n s p o r t  

system h a s  a h igher  t ransmiss ion  t o  t h e  m a s s  spec t rometer  (30-40%) 

and can  be  used wi th  e i t h e r  e l e c t r o n  impact (EI) o r  C I  mass spectro-  

meter modes, t h i s  i n t e r f a c e  i s  s t i l l  l i m i t e d  i n  i t s  a p p l i c a b i l i t y  

t o  i n v o l a t i l e  s p e c i e s .  Later work by G a m e s  e t  a1 (186) e x c l u s i v e l y  

w i t h  t h e  b e l t  t r a n s p o r t  system showed i t s  use  w i t h  a wide range  of 

compounds; however, t h e r e  w e r e  s t i l l  problems w i t h  thermal ly  l a b i l e  

compounds, compound c lass  dependent s e n s i t i v i t y ,  and i o n  s o u r c e  

p r e s s u r e  f l u c t u a t i o n s  w i t h  aqueous s o l u t i o n s .  

Often h igh  v a p o r i z a t i o n  t e m -  

Other  HPLCIMS i n t e r f a c e s  have u t i l i z e d  e l u e n t  s p l i t t i n g  

An e x t e n s i v e  review of  HPLCIMS i n t e r f a c e s  i s  t h a t  of Dawkins 

and McLafferty (134). The a u t h o r s  o u t l i n e  c u r r e n t l y  used non-MS 

d e t e c t o r s  f o r  HPLC, t h e  advantagesldisadvantages of MS d e t e c t i o n ,  

and des ign  c o n s i d e r a t i o n s  f o r  HPLCIMS i n t e r f a c e s  and e v a l u a t e  t h e  

v a r i o u s  p r e s e n t l y  used i n t e r f a c e s .  The major d i sadvantage  o r  in-  
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9 2  MIIDALL 

4 t rumen ta t ion  l i m i t a t i o n  f o r  MS d e t e c t i o n  is t h e  v o l a t i l i t y  re- 

qu i r emen t :  a v a p o r  p r e s s u r e  of  10 T o r r  i s  r e q u i r e d f o r i o n i z a t i o n  

i n  a c o n v e n t i o n a l  i o n  s o u r c e .  S e v e r a l  methods--rapid h e a t i n g ,  f i e l d  

d e s o r p r i o n ,  and d i r e c t  chemica l  i o n i z a t i o n  (DC1)--have been  used t o  

o b t a i n  s p e c t r a  of i n v o l a t i l e  s p e c i e s  and are d e s c r i b e d  i n  t h i s  

reEerence.  Thus f a r ,  o n l y  D C I  w i t h  d i r e c t  s o l u t i o n  i n t r o d u c t i o n  

(now commonly c a l l e d  d i r e c t  l i q u i d  i n t r o d u c t i o n ,  DLI) , h a s  been 

i p p 1  i e d  to a c o n t i n u o u s l y  o p e r a t i n g  HPLC/MS i n s t r u m e n t .  

Ihe method (which w a s  deve loped  commerc ia l ly  a t  t h e  same t i m e  as 

t h e  p r e l i m i n a r y  f e a s i b i l i t y  s t u d i e s  of  the DGC/MS (187,188) w e r e  

completed)  

v o l a t i l i t y  r e q u i r e m e n t  than o t h e r  HPI,C/MS s y s t e m s .  The i n t e r f a c e  is  

q u i t e  c i m i l a r  t o  t h e  DGC/MS i n t e r f a c e  i n  t h a t  t h e  column e f f u e n t  i s  

cxpanded as a j e t  ( h e r e ,  of l i q u i d  d r o p l e t s )  i n t o  vacuum a t  mi ld  

Lemperztures .  The re  is ,  however,  some l o s s  o f  s e n s i t i v i t y  due t o  

c l u e n t  s p l i t t i n g  and t h e r e  i s  also a r e q u i r e m e n t  of some t h e r m a l  

5 t a b i l i t y .  (See  R e f e r e n c e  189 f o r  a d i s c u s s i o n  of  t h e  o p t i m i z a t i o n  

of t h i k  k ind  of i n t e r f a c e . )  

-5 

a p p e a r s  t o  g i v e  a h i g h  s e n s i t i v i t y  and h a s  a lower  

A r e c e n t l y  d e s c r i b e d  i n t e r f a c e  combines t h e  a d v a n t a g e s  of  

d i r e c t  l i q u i d  i n j e c t i o n  and t h e  moving b e l t  t e c h n i q u e  (190) .  Here 

t h e  l i t u i d  stream is  c o n c e n t r a t e d  by f l o w  a l o n g  a h e a t e d  w i r e  ( w i t h  

057 e v a p o r a t i o n  of  the s o l v e n t )  w i t h  d i r e c t  i n t r o d u c t i o n  of t h e  

c o n c e n t r a t e d  s o l u t i o n  v i a  a f i n e  n e e d l e  valve. 

A r o t h e r  r e l a t e d  d i r e c t - l i q u i d - i n t r o d u c t i o n - t y p e  i n t e r f a c e  i s  

t h e  crossed-beam HPLC/MS where  t h e  HPLC e f f l u e n t  i s  i n t r o d u c e d  i n t o  

3 vacucm r e g i o n  v i a  a c a p i l l a r y  t u b e ,  t h e  end of which a c t s  a s  a 

s u p e r s o n i c  n o z z l e  (135) .  A skimmer downstream of  t h e  expanding 

e f f l u e r t  p e r m i t s  e x t r a c t i o n  of  a m o l e c u l a r  beam f o r  sample i n t r o -  

d u c t i o n  i n t o  t h e  mass s p e c t r o m e t e r .  O r i g i n a l l y ,  a laser beam c rossed  

w i t h  t h e  expanding j e t  w a s  u sed  t o  v a p o r i z e  t h e  s o l u t e / s o l v e n t  mix- 

tiire. A m o d i f i e d  d e s i g n  employs t he  laser ( o r  a l t e r n a t i v e l y ,  a 

f l a m e  v a p o r i z e r )  t o  h e a t  t h e  c a p i l l a r y  t i p  t o  v a p o r i z e  t h e  m i x t u r e  

b e f o r e  expans ion  t h r o u g h  the c a p i l l a r y  o r i f i c e .  I o n i z a t i o n  may b e  
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PRESENT STATUS OF DENSE GAS APPLICATIONS 93  

by e i t h e r  E I  o r  C I .  

f a c e  i n c l u d e  a somewhat l o w  s e n s i t i v i t y  (%l Fig) t o  i n v o l a t i l e  com- 

pounds, some p y r o l y s i s  of thermal ly  l a b i l e  compounds, and incomplete 

v a p o r i z a t i o n  and/or  condensat ion of s p e c i e s  w i t h i n  t h e  molecular  

beam. However, t h e  system h a s  been f u r t h e r  r e f i n e d  (191) r e s u l t i n g  

i n  a n  improvement i n  s e n s i t i v i t y  (60 pg/s )  w i t h  l e s s e n i n g  of pyro l -  

y s i s  and condensat ion.  

Problems i n i t i a l l y  encountered w i t h  t h i s  in te r -  

DGC/MS 

An a l t e r n a t i v e  and s i m i l a r  procedure t o  HPLC is DGC because of 

i ts  a p p l i c a b i l i t y  t o  t h e  same compounds a s  HPLC. The p o s s i b i l i t y  

t h a t  a d i r e c t  coupl ing  of a mass spec t rometer  t o  a dense g a s  chro- 

matograph would y i e l d  an instrument  combining the advantages of GC/  

MS and HPLC w a s  f i r s t  d i s c u s s e d  by Giddings, Myers and Wahrhaftig i n  

1970 (136). The proposed i n t e r f a c e  depended upon t h e  very  r a p i d  

expansion of t h e  s o l u t i o n  i n t o  a vacuum t o  form a s u p e r s o n i c  molec- 

u l a r  beam which would c a r r y  t h e  vapor ized  s o l u t e  d i r e c t l y ,  w i t h  

minimal c o l l i s i o n ,  i n t o  t h e  mass spec t rometer  i o n  source .  Thus, no 
h e a t i n g  of t h e  dense gas  s o l u t i o n  would be r e q u i r e d ,  t h e  temperature 

being determined only by t h e  c r i t i ca l  temperature  of t h e  s o l v e n t  gas  

s e l e c t e d .  There would be no v o l a t i l i t y  requirement;  i n s t e a d ,  t h e r e  

would b e  the requirement  of s o l u b i l i t y  i n  a dense gas ,  b u t  a l l  sys-  

t e m s  s o l u b l e  i n  a l i q u i d  should a l s o  d i s s o l v e  i n  a n  a p p r o p r i a t e  

dense g a s .  The proposed in te r face- -wi th  t h e  i n h e r e n t  advantageous 

supersonic  molecular  beam c h a r a c t e r i s t i c s  of f a s t  expansion,  n e a r l y  

c o l l i s i o n l e s s  t r a n s p o r t  ( i . e . ,  a f t e r  molecular  f low i s  e s t a b l i s h e d ) ,  

high-to-low p r e s s u r e  c a p a b i l i t y ,  c e n t e r l i n e  c o n c e n t r a t i o n  of heavy 

components i n  l i g h t / h e a v y  mixtures ,  and low temperatures--seemed 

s u i t e d  t o  t h e  i n s t r u m e n t a t i o n  problem. Elementary c a l c u l a t i o n s  i n -  

d i c a t e d  t h a t  w h i l e  s o l u t e  aggrega t ion  might be  too  f a s t  f o r  de tec-  

t i o n  of i s o l a t e d  s o l u t e ,  several nonequi l ibr ium e f f e c t s ,  d i f f i c u l t  

even t o  estimate,  might w e l l  make t h e  ra te  of aggrega t ion  s l o w  

enough so t h a t  t h e  coupl ing  would b e  f e a s i b l e .  

supersonic  molecular  beams has  become very  widespread i n  recent 

While t h e  use  of 
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y e a r s ,  t h i s  a p p l i c a t i o n  i s  un ique  i n  t h e  c o n d i t i o n s  imposed i n  t h e  

beam system; t h e  f i r s t  DGC/MS i n s t r u m e n t  is  d e s c r i b e d  i n  d e t a i l  

e l s ewhere  (187,188). 

Gauw e t  a1 (35) a l s o  have proposed t h e  c o u p l i n g  of a m a s s  spec-  

t r o m e t e r  a n d  a d e n s e  g a s  chromatograph and have  p r e s e n t e d  r e s u l t s  

o b t a i n e d  w i t h  t h e i r  p r e l i m i n a r y  d e s i g n .  While  v e r y  few d e t a i l s  

were g i v e n  a b o u t  t h e  a c t u a l  i n t e r f a c e  d e s i g n ,  i t  does n o t  a p p e a r  t o  

be u s e f u l  f o r  i n v o l a t i l e  compounds. Column e f f l u e n t  i s  s p l i t  s o  

t h a t  approx ima te ly  0 .2% is  expanded th rough  a s m a l l  c a p i l l a r y  t u b e  

from a n  e x t e r n a l  tee t o  t h e  m a s s  s p e c t r o m e t e r  sample i n l e t  system. 

The i n t e r f a c e  tee i s  s t a t e d  t o  b e  wound w i t h  h e a t i n g  t a p e  and heated 

t o  a s  h i g h  a t e m p e r a t u r e  as 45OoC. 

sample i n l e t  sys t em must a l s o  b e  a t  t h i s  t e m p e r a t u r e  so t h a t  s o l u t e  

v o l a t i l i t y  and t h e r m a l  s t a b i l i t y  approach ing  t h a t  r e q u i r e d  f o r  G C /  

MS iGs n e c e s s a r y .  

T h i s  i m p l i e s  t h a t  t h e  e n t i r e  

I'he need f o r  a DGC/MS i n s t r u m e n t  shou ld  b e  a s c e r t a i n e d .  Obvious- 

l y ,  i t  w i l l  b e  u s e f u l  f o r  compounds f o r  which GC a n a l y s i s  i s  n o t  

p o s s i b l e .  Iiowever, because  DGC i s  s o  s i m i l a r  t o  HPLC i n  t e r m s  of 

a p p l i c a b i l i t y  t o  s o l u t e s  and  i n  l i g h t  of t h e  r a p i d  development of  

?IPI,C/MS, one wonders i f  a DGC/MS i s  s u p e r f l u o u s .  A c t u a l l y ,  a l l  of 

t h e  d i r e c t - L i q u i d  i n t r o d u c t i o n  HPLC/MS i n t e r f a c e  d e s i g n s  o p e r a t e  

s i m i  Larly t o  t h e  s u p e r s o n i c  beam DGC/MS i n t e r f a c e .  Comparison of 

t h e  d e s i g n  is more a q u e s t i o n  o f  where t h e  v a p o r i z a t i o n  and concen- 

t r a t i o n  p r o c e s s e s  t a k e  p l a c e .  C e r t a i n l y  DGC/MS w i l l  have  t o  b e  

compared t o  HPLC/MS i s  terms of b o t h  chromatography (DGC v s  IIPLC) 

and ?he i n t e r f a c e r d e t e c t o r  performance ( s e n s i t i v i t y ,  dynamic r ange ,  

compound c l a s s ,  y i e l d ,  en r i chmen t ,  chemica l  e f f e c t ,  i n t e g r i t y  of t h e  

ch romatograph ic  p r o f i l e ) .  The re  i s  no obv ious  area ( e x c e p t ,  per-  

h a p s ,  t h e  r a n g e  of compound classes t h a t  can  b e  chromatographed)  

where DGC/MS s h o u l d  n o t  compare f a v o r a b l y  and i n  some c a s e s  even  

show s u p e r i o r i t y .  Moreover,  t h e  m o l e c u l a r  beam i n t e r f a c e  f o r  d e n s e  

g a s  r_n a mass s p e c t r o m e t e r  w i t h  o r  w i t h o u t  t h e  chromatography c a n  

c e r t a i n l y  b e  used  f o r  s t u d y i n g  and m o n i t o r i n g  d e n s e  g a s  sys t ems .  
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PRESENT STATUS OF DENSE GAS APPLICATIONS 95 

DGC/MS i s  a complement to ,  n o t  a replacement for ,  GC/MS and HPLCIMS; 

it seem to  be  t h e  method most amenable f o r  u s e  i n  dense  (super-  

c r i t i c a l )  gas  work. 

6. COMPILATION OF WORK I N  DENSE GAS EXTRACTION 
AND DENSE GAS CHROMATOGRAPHY 

Some comments about  t h e  purpose, c o n t e n t s ,  and o r g a n i z a t i o n  of 

Table  1 are necessary .  The purpose was t o  make a working summary 

which would g i v e  a c u r r e n t  l i s t i n g  of t h e  dense g a s l s o l u t e  systems 

t h a t  have been s t u d i e d  a long  w i t h  t h e  temperature  and p r e s s u r e  

ranges  used w i t h  a p a r t i c u l a r  combination of dense gas  and s o l u t e .  

The t a b l e  is o r d e r e d  by s o l v e n t  gas .  Each g a s  is ass igned  t o  one of 

t h r e e  groups-- inorganic ,  o rganic  (C,H,O), and halogenated organic .  

The f i r s t  is ordered  a l p h a b e t i c a l l y  then  numerical ly:  

N 2 ,  N 2 0 ,  NH3, S F 6 ;  

number of carbon,  then  hydrogen, atoms. The order  f o r  t h e  haloge- 

na ted  o r g a n i c s  i s  more a r b i t r a r y :  CHF3, CC1F3, CBrF3,  CHC1F2, CC12F2 

and C2H4F2. 

l o g i c a l l y .  Dense gas  mixtures  fo l low t h e  d a t a  f o r  t h e  pure  major 

component w i t h  t h e  fo l lowing  n o t a t i o n :  (Major s o l v e n t  gas) /Modif ie r ,  

wi th  t h e  mixtures  ordered  by modi f ie r  accord ing  t o  t h e  scheme used 

f o r  t h e  major s o l v e n t  gases  i n c l u d i n g  p l a c i n g  halogenated o r g a n i c  

m o d i f i e r s  (CH2C12, CC14) last .  

A r ,  C02,  H20, 

f o r  t h e  second group t h e  o r d e r  i s  based upon t h e  

The e n t r i e s  f o r  a p a r t i c u l a r  gas  are arranged chrono- 

Phase behavior  of dense b i n a r y  and t e r n a r y  s o l u t i o n s  i s  o f t e n  

r e a d i l y  a p p l i c a b l e  t o  dense gas  e x t r a c t i o n  and chromatography. When- 

ever  t h i s  appeared t o  b e  t h e  case, t h e  informat ion  w a s  inc luded  i n  

Table  1. Moreover, t h e r e  i s  a r e l a t e d  l a r g e  body of  work r e p o r t i n g  

s o l u t e  s o l u b i l i t i e s  i n  compressed gases  (e .g . ,  References 192-196) 

b u t  a t  tempera tures  o f t e n  much h igher  than  c r i t i c a l  and o f t e n  w i t h  

r a t h e r  s m a l l ,  v o l a t i l e  s o l u t e  molecules  (e .g . ,  ace tone)  t h a t  are 

e a s i l y  analyzed by GC. Perhaps t h e s e  systems would provide  u s e f u l  

in format ion  f o r  t h o s e  i n t e r e s t e d  i n  p o s s i b l e  dense g a s l m o d i f i e r  
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s o l v e n t s  b u t  s i n c e  they  do n o t  d i r e c t l y  concern t h e  s o l v a t i o n  of 

heavy, i n v o l a t i l e  s p e c i e s ,  they are n o t  u s u a l l y  inc luded  h e r e .  

Often,  two r a t h e r  s u b j e c t i v e  c r i t e r i a  w e r e  a p p l i e d :  1. i s  t h e  gas  

phase dens i ty  

complexity compare t o  naphtha lene  which is e a s i l y  d i s s o l v e d  by 

s e v e r a l  dense gases .  Some s imple  systems s t u d y i n g  s o l u t e  s o l u b i l i t y  

i n  dense gases ,  e . g . ,  naphtha lenefe thylene ,  are inc luded  f o r  h i s -  

t o r i c a l  p e r s p e c t i v e  b u t  many have been omi t ted  because they are 

o r t e n  quoted and r e g u l a r l y  d u p l i c a t e d .  

> 0.7(pc)  and 2 .  how does t h e  s o l u t e  s i z e  and 

bowever, a l l  r e f e r e n c e s  t h a t  could be  found d e s c r i b i n g  a c t u a l  

dense gas  e x t r a c t i o n  and chromatograph c o n d i t i o n s  are inc luded .  

When t h e  r e f e r e n c e s  were p a t e n t s ,  only t h e  s p e c i f i c a l l y  descr ibed  

examples w e r e  used;  ex tens ions  t o  o t h e r  gases  and broader  o p e r a t i n g  

c o n d i t i o n s  t h a t  are t y p i c a l l y  claimed i n  p a t e n t s  are not  l i s t e d  

here .  The d i s c u s s i o n  about  dense gas  chromatography i n  S e c t i o n  4 

w a s  an overview. More r e f e r e n c e s  a r e  e n t e r e d  i n  Table  1 than  w e r e  

c i t e d  iii t h a t  s e c t i o n .  It  i s  hoped t h a t  t h e  r e a d e r  w i l l  f i n d  Table  

1 t o  b e  a c u r r e n t ,  e x t e n s i v e  compi la t ion  t h a t  i s  somewhat informa- 

t ive about t h e  c h r o n o l o g i c a l  development of t h e  area of s o l u t e  solu-  

b i l i t y  i n  dense gases  w h i l e  provid ing  background informat ion  on 

which t o  b a s e  exper imenta l  s e l e c t i o n  of  t h e  s o l v e n t  gas  and opera t -  

ing  c o n d i t i o n s .  
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